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Abstract-Non-linear heat transfer between concentric cylinders is studied numerically based on the 
BGK-mode1 equation. The numerical procedure adopted is a combination of the Willis integral iteration 
scheme and the discrete ordinate method. The results for constant collision frequency compare very well 
with other existing numerical results based on the integral equation approach. Cases with variable collision 
frequency are also considered and the results show that there are only slight changes with respect to the 
constant collision frequency cases. The method used in this paper can be applied to a wide class of problems. 
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NOMENCLATURE 

the ratio of the outer cylinder radius 
to the inner cylinder radius ; 
the dimensionless molecular velo- 
city vector ; 
the z-component of c, see Fig 1; 
the dimensionless molecular distri- 
bution function ; 
modified distribution functions, see 
equation (7) ; 
the mass flux in the r-direction, see 
equation (12); 
the dimensionless number density ; 

NziN,; 
the “number densities” associated 
with the boundary conditions, see 
equation (5) ; 
the heat flux in the r-direction, see 
equation (11) ; 
the total heat flux, see equation 

(12); 
the radial distance, see Fig 1; 
the polar component of c, see Fig. 1; 
the dimensionless temperature ; 

WT,; 
the temperatures at the inner cy- 
linder and the outer cylinder res- 
pectively ; 

the transformed variables of r and 

*; 
the inverse Knudsen number, see 
equation (6) ; 
the dimensionless collision fre- 
quency, see equation (6) ; 
the polar angle of c, see Fig. 1. 

INTRODUCTION 

THE NON-LINEAR kinetic equations have thus far 
not yielded to analytic attempts at their solution, 
at least not in any way that is widely applicable. 
However, non-linear problems can be solved by 
direct methods such as the Monte Carlo and 
discrete ordinate methods [l]. These methods 
have been successfully used not only in rarefied 
gas dynamics but also in related fields such as 
radiative transfer and neutron transport (e.g. 
see [2,3].). The development of such techniques 
is thus of considerable utility. 

In this paper we report the results of the 
application of a modification of the discrete 
ordinate method to the problem of heat transfer 
in a rarefied gas between concentric cylinders due 
to a large temperature difference. Although the 
problem itself is of no great interest per se it is 
useful for studying the effects of non-linearity 
and non-planar geometry, and also lends itself 
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to experimental verification. To simplify the 
computational effort a model of the Boltzmann 
equation is used; however, there is no conceptual 
difficulty in extending the method to a full 
Boltzmann equation with cut-off intermolecular 
force potential. This problem has been previously 
treated by Anderson [16] who transformed the 
problem into non-linear integral equations and 
solved them using a sophisticated numerical 
method. Anderson’s method, while a very 
useful numerical study, becomes increasingly 
complicated with the geometry and the govern- 
ing kinetic equation. The method suggested here, 
on the other hand, is simple in concept and 
straightforward in application and can easily be 
extended to problems of complicated geometry 
and more exact model equations. The results for 
constant collision frequency achieved agree very 
well with Anderson’s; we have, in addition, 
considered the variable collision frequency case. 

DISCUSSION OF THE METHOD 

For a monatomic neutral gas the molecular 
velocity distribution function in general depends 
on time, position and molecular velocity. In the 
discrete ordinate method, one tries to determine 
the distribution function over a set of suitably 
chosen sample points, instead of over all points, 
in velocity space. Moments of the distribution 
function are then obtained using numerical 
quadratures based on this set of points. The 
discretixation process transforms the single 
transport equation with a varying parameter, 
i.e. the velocity c, into a hyperbolic system of 
coupled first order partial differential equations. 
If Cartesian co-ordinate systems are used, and if 
proper care is taken in regard to the collision 
integral, the set of discrete ordinates of the 
molecular velocity will appear only as constants. 
Usually one then solves the system of partial 
differential equations using iteration and a finite- 
difference approximation to handle the remain- 
ing variables (e.g. see [4, 53). When curvilinear 
coordinate systems are used the transport 
equation in general will contain derivatives with 
respect to the velocity variables as well. In 

principle one may devise a finite difference 
scheme for such derivatives based on the set of 
discrete ordinates, although to our knowledge 
no calculations of this kind have been carried 
out so far. 

For a hyperbolic system of first order partial 
differential equations there are usually two ways 
of carrying out the finite difference approxi- 
mation ; one is to use a set of rectangular nets 
and the other is to use the characteristic lines of 
the system [6]. Provided proper care is taken of 
the domain of dependence and the numerical 
stability consideration, both numerical pro- 
cedures are convergent. All published results of 
rarefied gas dynamics problems treated by 
discrete ordinate methods have employed the 
first scheme. However, it seems that the second 
scheme will offer some computational advantage 
because we do not have to use a difference 
approximation for the derivatives along the 
characteristic lines as was done in [6]. We may 
first formally integrate this kind of transport 
equation in a special way, even before the 
application of discrete ordinate approximation, 
and then make suitable approximations. 

Consider, for example, the problem of non- 
linear plane Couette flow with heat transfer as 
treated by Huang et al. [4], where the BGK- 
model equation was used. A typical discrete 
ordinate equation has the form of 

du 
z = c@(u) - u] (1) 

where a is taken to be a constant. If we regard 
G(u) as a known function we can integrate the 
above equation formally to obtain 

u(x) = u(xJ exp [ -tl(x - x,)] 

+ u X[ dy G[u(Y)I exp [ - ab - ~11. (2) 

If we write AX = .X - .x0, we may approximate 
the above equation by 

u(x) = u(x,,) exp [a Ax] 

+ G(x)[l - exp (-a Ax)] (3) 
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where G(x) is a suitable “guess”, usually some 
kind of mean value based on the previous 
iteration. Huang et al. approximated equation 
(I) by 

u(x) - +%I) 
Ax 

i.e. 
= a{G(x) - + [U(x) + U(Xo~l> (4) 

u(x) = 
(1 - *aAx) u(q,) + aAxG(x) 

1 + $aAx 

Provided that G(u) = G(x) + O(Ax) in (x, x,J 
it is easy to see that both equations (3) and (4) 
have a truncation error of Ok with respect 
to equation (2). Nevertheless, in practice equa- 
tion (3) will be superior than equation (4) 
especially when aAx is not sufficiently small. 
Bramlette [7] has carried out some calculations 
on the same problem as treated by Huang 
et al. [4]. His results agree very well with those 
of Huang with considerably less computational 
effort. For example, for Knudsen number equal 
to unity Bramlette used 64 points in the velocity 
space and 5 space steps across the physical 
space, while Huang used 144 points, and 50 
steps respectively. There are about five iterations 
involved and the difference in successive iterates 
of the macroscopic variable is 10m4. This is 
perhaps expected since equation (3) has a form 
similar to the Willis integral iteration scheme 
[8], while equation (4) is closer to the Knudsen 
iteration (e.g. see [S]). It is generally recognized 
that integral iteration is the better of the two. 

We note that equation (1) is an ordinary 
differential equation. This is due to the simple 
geometry of the problem. However, similar 
conclusions can also be drawn for a general 
problem. In those cases, the common truncation 
errors of equations (3) and (4) will contain terms 
essentially due to the interpolation required to 
obtain the u(x,J term in equation (2) in addition 
to those introduced due to the approximation of 
G(a). 

To gain experience in the alternative approach 
we first applied it to the linearized cylindrical 

Couette flow problem [9]. The results checked 
well with other existing numerical solutions. In 
this paper we extend the treatment to the 
problem of nonlinear heat transfer between 
concentric cylinders, which was also treated by 
Anderson [lo] using an integral equation 
method. As is the case for most discrete ordinate 
methods, extensions to nonlinear problems do 
not significantly complicate the problem. In 
fact we have found that in this case the nonlinear 
problem is actually more manageable than the 
linear problem. 

FORMULATION OF THE PROBLEM 

Consider the problem of steady heat transfer 
between two concentric cylinders. The inner 
cylinder with radius R, is maintained at a 
constant temperature 7-r while the outer cylinder 
with radius R2 is maintained at T,. For the 
boundary conditions at the walls we assume 
diffuse reflection with unity thermal accom- 
modation coefficients, i.e. the distribution of 
particles emitted from the boundary point B is 
given by 

F, = N, (2nRT,)-* exp [ - t2/2RTB] (5) 

where R is the gas constant, 5 is the speed of 
the molecules, Ts is the wall temperature and 
N, must be determined as part of the solution 
from the mass conservation law applied at the 
boundary. The choice of equation (5) is only for 
convenience and other boundary conditions may 
be used without introducing any complications. 
It should also be noted that our results can be 
applied directly to problems with diffuse 
boundary conditions but with incomplete acco- 
modation inefficients. 

Let us choose R,, N,, T,, (2RT,)+ and 
N,(2RTl)-?F as the scaling parameters for 
distance, number density, temperature, mole- 
cular velocity and the molecular distribution 
function, respectively. Although N, is an un- 
known quantity it can be related to the average 
number density, N,,, between the cylinders once 

G 
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the problem is solved. It is obvious that N, is To save computer storage space we introduce, 
linearly proportional to N,, and While No might following the procedure adopted by Huang and 
appear to be a more logical choice the use of N, Hartley f4], the following two functions 
results in the simplest formulation. Denote the 
dimensionless variables of position, molecular g(r, s, *) = neSz 
velocity, number density, temperature and dis- 

_[ dcz f 

tribution function by r = (I, 0, z), c = (s, c;), 
n, t and f, respectively (See Fig. 1 for the co- h(rt s, t,b) = 2neSz _r* dc,c$ f (7) 
ordinate systems). The governing transport 

where the factor es2 is introduced to anticipate 
the later adoption of modified half-range Gauss- 
Hermite quadrature points [13] as the discrete 
ordinates in the s-coordinate. The governing 
equations for 9 and ir are, respectively, 

FIG. 1. Physical space and velocity space coordinates. 
G = nt-‘exp [-(t-l - 1)$-j 

gfr = 1) = 1, lsi < w2 (8) 

gfr = b) = n& ’ exp I--(t; * - 1) s’], 

equation and boundary conditions can then be 
written as [17] 

Ilr/l < n!Z 

and 
s cosil,af _ SW ?f 
[ 

-I- ar r all, I = av[F-j-j 

[ 

ah sin $ ah 

f(r = 1) = hexp [-C2]* )fq < 7ciz &f 

s cosQy----- 
I r alir 

= m[H - h-j 

f(r = b) = n2(nt2)- t exp [ - c*/t,], 
H = nexp[-(t-’ - l)s2] (91 

I$1 > 7112 

where b = R,/R,, ia = N&V,, t2 = T,/T,, 
a = v~~~/~~(~~~~~ and F = n(ntf--g exp [-2/t]. 

]$I > %Q. 

OL may be regarded as the inverse of the Knudsen In terms of g and h the density and temperature 

number. v0 is some reference collision frequency, are defined by 

and v is the dimensionless collision frequency. 
In general we may take vg = Pr p/p where p is 
the pressure, Pr the Prandtf number, and p the 

2= co 
n =- d$ dse-“sg 

viscosity coefficient fl2]. If we regard Pr as s s 

constant and let p Yary as some power of 
temperature only, then v = nTIWa where (r is 

(lo’ the index of the power law of the viscosity. For 
future reference we note that, because of 

nl = ;jd+jdstP2s,; + ?g,. 

symmetry and the assumed boundary condi- 
tions, f depends only on r and c and is an even For this problem one would also be interested 
function of a). Furthermore, there is no net in the heat flux. If we scale the heat flux by 
flow velocity. N ,mi2RTly*/2n, where m is the mass of a gas 

= clv[G - g] 
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molecule, the dimensionless heat flux Q is 
defined by 

Q=2/d$cos$/dse-‘z[~+szg]r2. (11) 

0 0 

We note that the total heat flux must be the 
same across any closed curve around the inner 
cylinder. This can be used as a check against 
numerical errors. We can also use the condition 
that there should be no net flow velocity as 
another check. These two conditions are ex- 
pressed as 

QT = rQ = constant 

A4 = Xd$cos$~dse-S2s2~ = 0 
1 

(12) 
0 

where in the first equation we have used 
concentric circles as the closed curve. 

For future reference we record the free- 
molecular solution here. It is easy to see that in 
this limit (i.e. c( + 0) we have 
g = 1, I+[ < sin-’ l/r 

= n,t;’ exp [-(t;l - l)s2], 

I*1 > sin-’ l/r 

h =l, VI < sin-’ l/r 

= n,exp[-(t;’ - 1)s2], 

l*l > sin-’ l/r. 

Using equations (10)-(12) we obtain 

l-n,. 1 
n=n,+- sin-’ - 

71 r 

nt = n,t, + 1 - n2t2 sin-’ 1 - 
71 r 

rQ = (&U - n,t$) 

NUMERICAL PROCEDURES 

1 (13) 

7 

, (14) 

i 

Since equations (8) and (9) are similar it 
suffices to discuss just the numerical procedures 
used in determining g. First we observe that 

equation (8) is a partial differential equation. It 
thus appears that we must use interpolations to 
obtain terms like u(xo) as mentioned previously. 
However, because of the symmetry of the 
problem such interpolations can actually be 
avoided. We have made full use of this fact. 

Following von Neumann’s suggestion [ 141 
we define two new variables x = r cos 1(/, 

y = r sin II/. 
We note that y = constant is nothing but a 

characteristic line of equation (8). In terms of 
x and y (8) assumes the form 

(15) 
G = nt-‘exp[-(t-l - l)s’]. 

Equation (15) holds in an annulus 1 < x2 + y2 
< b2 (Fig. 2) and the boundary conditions for 
g are 

“g = 1, x2 + y2 = 1, x > 0 

g = n,t;‘exp[-(t;’ - l)s’], (16) 

x2 + y2 = b2, x < 0. 

We also know that g is even in y. Because of the 
nature of the boundary conditions there are 
three kinds of integration paths for equation 
(15) as shown in Fig. 2. Physically a typical 
Z-path corresponds to the free molecular tra- 
jectory of a particle emitted from the outer 
cylinder and ending up on the inner cylinder. 

m 

v 
FIG. 2. Transformed-variable space. 

In [14] an equation similar to equation (15) 

was integrated by converting the derivative 
term to a difference ratio. As pointed out 
previously because of the special form of the 
right-hand side of equation (15), it would be 
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advantageous to integrate it first and then apply 
the finite difference scheme. To simplify our 
discussion we will choose v = 1, which was the 
case that Anderson considered [lo]. We then 
integrate equation (15) to obtain 

g(x, Y, 4 = s(xo9 Y, 4 exp I_ f (x - no)] 
L 

x 

+ f 

s 
dxr G(x’, y, s)exp - ;(x - 

Xl2 

_J 

xl) 
1 

(17) 

The initial values of g for each path of integra- 
tion are given by equation (16). We are now 
ready to apply the discrete ordinate approxima- 
tion and the finite difference approximation. 
Recall that both g and h are still distribution 
functions. What we are interested in are really 
the macroscopic quantities, i.e. integrals of g 
and h over the velocity space for fixed position 
r in physical space. Our numerical scheme 
should be devised accordingly. 

We observe from equation (15) that s and y 
appear only as parameters. From the boundary 
conditions we expect that g will be bounded 
everywhere for any value of s. From the way that 
g is related to the macroscopic quantities such 
as in equation (10) we are motivated to use the 
modified half-range Gauss-Hermite quadrature 
points [13] for the s-variable. Next come the 
choice x and y, or, equivalently, r and yQ. In 
physical space, i.e. the r-coordinate, we would 
like to distribute, the sample points so as to 
anticipate the behaviour of the macroscopic 
variables. For example, close to the inner 
cylinder n and t both have a sharp gradient in 
the near free-molecule flow as is evident from 
equation (14). As the Knudsen number gets 
smaller, n and t both have a boundary-layer type 
behaviour within a distance of the order of a 
mean free path from either boundary, known as 
the Knudsen layers. The boundary-layer be- 
havior is milder in the outer Knudsen layer since 
the inner cylinder has smaller area than the 
outer one. Consequently, we would like to have 
the smallest increment of Ar close to the inner 
cylinder, the next larger close to the outer 

cylinder, and the largest in between. We can 
thus draw a series of concentric circles between 
the boundaries in the (x, y)plane. The step-size 
of the x-integration, i.e. Ax = x - x0, then 
varies from point to point. It is essentially the 
segment along any path line that lies in between 
two neighboring circles. It is evident that the 
choice of maximum allowable Ax also has an 
effect on the choice of Ar. Finally we note that 
the increment in y is determined by the maximum 
allowable increment for the e-variable at those 
r’s at which we wish to evaluate the macroscopic 
quantities. Unlike the s variable the number of 
sample points for $ varies for each given r. 

Since the free-molecular distribution function 
is discontinuous at y = 1 [see equation (13)] we 
will use a smaller increment in y near that point. 

Once the sample points are chosen we are 
ready to solve equation (17) numerically. The 
structure of equation (17) suggests that an 
iteration scheme should be used. Let us write 
g”, etc., as the solution of the mth iteration, and 
define 

gzk = gm(Xir Yj, Sk) 
(18) 

The iterative equation corresponding to equa- 
tion (19) can be written as 

g;k = s;- l)jk ev 
[ 1 -!Ax~-~ + sk 

exp [-%(Xi-X1)l. 

The simplest way to evaluate the integral is 
perhaps to replace G”- ’ by 

G;-’ = 3 [G”-’ (X, Sk) + G”-’ (Xi_ l, Sk)] (20) 

and equation (19) then becomes - 

(21) 

+ G$-l[l -exp(iAxi-l)]. 
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For fixed Axi the above approximation is 
obviously not a good one when a is large, i.e. 
towards the continuum limit. The integral in 
equation (19) has the form of a Laplace integral. 
From the asymptotic expansion of such an 
integral for large we know that it should be 
dominated by the behavior of Gm-’ at x = x1. 
In fact the asymptotic expansion of equation 
(17) for large a and finite s is 

+ (polynomials of $ exp [-3(x - x0)1. (22) 

Physically this is because the characteristics of 
equation (8) are nothing but the free-molecular 
trajectories. Initial information cannot be carried 
too far down such lines due to numerous 
collisions along the way. The simplest way to 
remedy this seems to be to just decrease the size 
of the increment Ax, One may also use better 
interpolation schemes than that of equation (20). 
Another way would be to devise an approxima- 
tion scheme based on the asymptotic form 
equation (22). However, no such attempts were 
made in the last two directions since our 
primary interest is not to generate precise 
numerical numbers. 

To start an iteration we adopt the strategy 
used by Anderson [lo]. The free molecular 
solution is used to start the iteration for 
a = 0.01. The final result of a = 001 then is 
used as the first guess for a = 1. The process is 
repeated for increasing a. 

RESULTS AND DISCUSSIONS 

Computations have been carried out on a 
CDC-6400 computer for a number of cases with 
b = 2.0. The bulk of the calculations were per- 
formed assuming constant collision frequency, 
i.e. v = 1, and with temperature ratio t, = 0.909, 
05 and 0.25. Some calculations have also been 
done for v = n, nT* and ~IT’-‘**~~ which 
correspond to the collision frequencies df a 
Maxwell molecule gas, a hard-sphere molecule 

gas, and argon gas, respectively [15]. All the 
results presented in the following are based on 
16 sample points in the r-variable, 6 to 21 in the 
$-variable depending on r, and 4 to 6 in the 
s-variable depending on the temperature ratio 
tz. How these sample points are chosen was 
described in the last section. With such a choice 
of sample points each iteration takes slightly less 
than 1.3 s. For each a the iterative procedure is 
terminated if both the relative difference of 
Q(r = 1) for successive iterations is less than 
ON)1 and the values Q, = rQ for all r differ less 
than 5 per cent. In fact except for a close to 10 
the defect of QT is usually less than 2 per cent. 
It may be pointed out that the numerical 
quadrature that we used yields Q(r = 1) = 0.882 1 
for free molecular case while the exact value 
should be 0.8862. Typically we need one 
iteration for a = 0.01 and about 20 iterations 
for a = 1 to 10. Based on the results the following 
statements can be made. 

(1) To test the numerical algorithm we have 
run cases with C, = 1.0, i.e. the trivial case, for 
v = 1 and a = O*Ol-8.0. In these cases both 
n and t should be equal to unity everywhere and 
there should be no net heat flux, i.e. QT = 0. 
It is found that both n and t are correct to the 
7th digit when a = 10 and 5th when a = 8.0. 
Both QT and M are found to be on the order of 
lo-‘. 

(2) The number density n and temperature t 
are plotted vs. r in Figs. 3-6 for tz = 0.5 and 
0.25 and for a = 0.01, 1.0, 3.0 and 10.0. All of 
these are for v = 1. It can be seen that the results 
are qualitatively the same as the linear case. 
Thus the non-linearity introduces complexity 
into the mathematics, but does not drastically 
alter the behavior. Anderson [lo] has also 
treated some cases with t, = 0909 and 0.5. He 
used an integral equation approach which is 
appropriate only to the BGK-model equation. 
Our results checked quite well with his. There 
are only slight deviations from his curve in the 
center region. He used a parameter I in place of 
the a that we are using They are related by 
3, = (tJ2)) l/a. The results for the total heat flux 
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IO 12 I .4 I.6 2.0 
t- 

FIG. 3. Temperature vs. r [v = 1; t, = 0.5; a = PO1 (P), 
1.0 (b) 3.0 (c), 10.0 (d)]. 

2-o1 
-1 

I .6 - 

n 

1.4- 

IO I .2 l-4 I.6 I.8 2-o 

FIG. 4. Number density vs. r [v’. 1; t2 = 05; a = 0.01 (a), 
1.0 (b), 3.0 (c), 10.0 (d); -+ denotes the corresponding n, 

values]. 

“O1 

f 

F 

FIG. 5. Temperature vs. I [v =‘l; t, = 0.25; a = 001 (a), 
1.0 (b), 3.0 (c). 10.0 (d)] 

2-6 

2.2 

n 

I.8 

l-4 

I,0 
I.0 12 14 I .6 2.0 

r 

FIG. 6. Number density vs. r [v = 1; t2 = 0.25; a = 0.01 (a), 
I.0 (b), 3.0 (c), 100 (d); + denotes the corresponding nz 

values]. 

normalized by the free molecular total heat flux 
and n, are plotted vs. l/a in Figs. 7 and 8. In the 
dimensional case the free-molecular heat flux 
depends on the temperature difference. Since 
the continuum case shows this same dependence 
we would expect no great deviation from it for 
intermediate regimes and, thus. the ratio exhibits 
the insensitivity to t2 shown. This is also 
confirmed by Anderson’s results. n,, however, 
depends significantly on t,. Since n, is related 
to the half-range mass flux at the outer wall this 
is as expected. We believe that there is a typo- 
graphical error in Anderson’s paper since our 
heat flux curve falls right on his curve for the 
spherical case and not the cylindrical one. From 
physical considerations for the same a the 

00 
I/U 

FIG. 7. Heat flux vs. l/a. 
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"2 

0.70- 

0.60- 

I/Q I.0 I.4 I.6 2.0 

FIG. 8. n2 vs. l/a. 
FIG. 9. Temperature vs.: (tz = @5 ; a = 2.0) 

cylindrical heat transfer should be larger than 
the spherical one and the reverse is true as 
represented by Anderson’s figures. 

(3) As pointed out previously, another check 

1.8. 

I.6 - 

for the numerical procedure is that M should 
vanish identically, see equation (12). For 
t, = 0409 case the final values of M are less 
than OQOl while for t, = O-5 and 0.25 they are 
less than OQO75 and 0.02 respectively. More 
iterations tend to drive M towards zero, but the 
rate is very slow. By decreasing the step- 
size, or by having smaller increments of y around 
y = 1, or by increasing the number of sample 

I.4 - 

n 

I.0 - 

0.8,.0 I I 
I.2 1.4 I.6 I.6 

points in s we can improve the results, but the 
improvement is not comparable to the effort. 
It is believed that the cause of this slow con- 
vergence is mainly due to the crude approxi- 
mation used in equation (20). 

r 

FIG. 10. Number density vs. r (tz = 0.5 ; a = 2.0). 

(4) To study the influence of the variable cylinder for v = n. The smallness of the change 
collision frequency we have also carried out is due to the fact that the temperature and 
similar calculations for v = n, nT+ and density changes are in opposite directions. Thus, 
nT l-“‘l(lb. There are only slight changes in the for example, the temperature increase at the 
number density and temperature profiles. In inner cylinder is accompanied by a density, and 
Figs. 9 and 10 n and tare plotted vs. I for t, = 0.5. hence collision frequency, decrease thus mini- 
Only curves corresponding to v = 1 and v = n mizing the effect. The heat flux curves are 
are plotted; those for the other two values of v different for different tz’s as they should be. The 
lie between them and are hence omitted for heat flux curve for v = n and t, = 0.5 is 
clarity. An increased collision frequency causes plotted in Fig. 7. The curves for v = nTf and 
the flow to behave more nearly like a contiuum. v = nT’-0’8’6 lie in between those of u = 1 and 
Thus the temperature is closer to one at the 
inner cylinder and closer to 0.5 at the outer 

v = n. For given t, there are only slight changes 
in the values of n2 for all the v’s. 
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o-5ll.O 

FIG. 11. (Number density) x (Temperature) vs. r [v = 1; 
t, = 0.5; o! = 0.01 (a), 1.0 (b), 3.0 (c). 10.0 (d). 

(5) It is known that in the continuum limit 
p = nt = constant. Therefore we can use the 
product nt as a measure of the deviation from 
continuum. In Fig. 11 we have plotted nt vs. r for 
v = 1, t, = 05 and a = 0.01, 1.0, 3a and 10.0. 
We note that the spread of each curve decreases 
as a increases for the first three curves, as one 
might expect from physical intuition. However, 
the spread for the curve a = 100 is wider than 
that of a = 3.0. This perhaps is due to the 
inherent defect in the numerical algorithm, 
depending on b, a, t,, the interpolation scheme 
equation (20), and the sample points used (see 
the following). 

(6) To test the dependence of the solution on 
the initial guess and the convergence of the 
numerical algorithm we have run 250 iterations 
for a = 10 and 600 iterations for a = 8.0, both 
for t, = 05 and v = 1. In both cases we started 
with the free-molecular solution as the first 
guess. At the beginning the iteration converges 
relatively fast and the defect for Qh i.e. the 
relative spread of Qn soon reaches a minimum. 
Afterwards, however, the defect of QT increases 
gradually and attains some limiting value which 
should depend on b, t2, a, the interpolation 
scheme equation (20), and the choice of sample 
points. For example, in the a = 10 case the 
minimum was assumed at 1.77 per cent after P 
iterations, then rose gradually to 2.10 per cent 

at the end of the 48th iteration, and stayed just 
above 2.125 per cent after 102 iterations. For 
a = 80 the defect of Qr assumes the minimum 
1.57 per cent at the 60th iteration and rises to 
just below 5.77 per cent at the end of 500th run, 
while QT(r = l)/(Q& changes from 0.319 to 
0.300. In principle one could also use the 
extrapolation technique used by Anderson [ 161 
to accelerate the convergence of the iteration 
scheme. A better interpolation scheme than that 
of equation (20) will also improve the con- 
vergence as discussed previously, especially 
when a is large. However, no such attempts 
were made. 

(7) As pointed earlier the numerical scheme 
that we are using is not expected to be good near 
the continuum limit. The same difficulty is also 
shared by other discrete ordinate methods [4] 
and the integral equation method [lo]. In [9] 
we found that by substracting the continuum 
solution from the distribution function we can 
obtain better solutions towards the continuum 
end. However, for the present problem and for 
the cases that we treated such a modification is 
not needed. 

REFERENCES 
1. M. N. KOGAN, Recent developments in the kinetic 

theory of gases, Rarefied Gas Dynamics (L. TRILLING 
and H. Y. WACHMAN, eds.), Vol. 1, p. 1. Academic 
Press, New York (1969). 

2. S. CHANDRASEKHAR, Radiative Transfer, Chapter 2. 
Dover, New York (1960). 

3. B. ALDER (ed.), Methoclr in Computational Physics, 
Vol. 1. Academic Press, New York (1963). 

4. A. B. HUANG and D. L. HARTLEY, Nonlinear rarefied 
Couette flow with heat transfer, Physics Fluids 11, 

5. 

6. 

7. 
8. 

9. 

1321-1327, (1968). 
H. WACHMAN and B. B. HAMEL, A discrete ordinate 
technique for the non-linear Boltzmann equation with 
application to pseudo-shock relaxation, Rarefield Gas 
Dynamics (C. L. BRUNDIN, ed.), Vol. 1, p. 675. Academic 
Press, New York (1967). 
R. COURANT, E. ISSACSON and M. REES, On the solution 
nonlinear hyperbolic differential equations by finite 
differences, Comm. Pure Appl. Math. 5,243-255 (1952). 
T. T. BRAMLETTE, Private communications. 
D. R. WILLIS, A study of some nearly free molecular 
flow problems, Aero. Engng Lab Report No. 440, 
Princeton University, New jersey (1958). 
C. L. Su and R. W. SPRINGER, A modified discrete 
ordinate approach in rarefied gas dynamics, submitted 
to Physics Flui& for publication. 



NONLINEAR CYLINDRICAL HEAT TRANSFER 1621 

10. 

11. 

12. 

13. 

D. G. ANDERSON, On the steady Krook kinetic equation, 14. 
Part II, J. Plasma Phys. 1, 255-268 (1967). 
P. L. BHATNAGAR, E. P. GRIST and M. KROOK, A model 
for collision processes in gases, I., Pbys. Rev. 94,51 l-525 15. 
(1954). 
D. R. WILLIS, Heat transfer and shear between coaxial 
cylinders for large Knudsen numbers, Physics Fluids 8, 16. 
1908-1910 (1965). 
A. B. HUANG and D. P. GIDDENS, A new table for a 
modified half-range Gauss--Hermite quadrature, J. 
Math. Phys.. 47, 213-218 (1968); also see N. M. STEEN, 17. 
G. D. BYRNE and E. M. GELBARD, Gaussian quadrature 

for the integrals 7 dx exp (-x2) j(x) and ! dx exp 

( -xz)j(x), Math. 2omp. 23, 661’471 (1969). ’ 

R. D. RICHTMEYER and K. W. MORTON, Difference 
MethoL for Initial Value Problems, 2nd edn., Chapter 
9. Interscience, New York (1967). 
S. CHAPMAN and T. G. COWLING, The Mathematical 
Theory of h’on-Uniform Gases. Cambridge University 
Press, London (1958). 
D. G. ANDERSON, On the numerical solution of certain 
nonlinear integral equations, Tech. Report No. 26, 
Engineering Science Laboratory, Harvard University, 
Massachusetts (1966). 
C. L. Su and D. R. WILLIS, Heat conduction in a 
rarefied gas between concentric cylinders, Physics 
Fluidr 11, 2131-2143 (1968). 

UNE METHODE ORDONEE DISCRETE MODIFEE POUR TRAITER 
LE TRANSFERT THERMIQUE CYLINDRIQUE NON LINEAIRE 

RQmn&Le transfert de chaleur non lineaire entre des cylindres concentriqua est ttudie numeriqnement 
a partir du modtle B.G.K. Le pro&de numerique adopt6 est une combinaison de la procCdure iterative 
integrale de Willis et de la methode ordonnec discrete. Les resultats, pour une frequence de collision con- 
stante, sont trb proches d’autres risultats numeriques, obtenus a partir de l’approche de l’tquation 
intigrale. 

Des cas de frtquence de collision variable sont aussi consider% et les r&bats montrent qu’il n’y a que de 
legers changements par rapport aux cas de frequence de collision rapide. 

La methode utiliste dans cet article peut-&re appliquee a une large variett de problbmes. 

ANWENDUNG DES VERFAHRENS DER DISKRETEN ORDINATE AUF DEN 
WARMEUBERGANG BE1 ZYLINDERGEOMETRIE 

Zuaammenfaasung-- Unter Anwendung der BGK-Modell-Gleichung wird der nichtlineare Warmetibergang 
zwischen konzentrischen Zylindem numerisch untersucht. 

Das verwendete numerische Verfahren ist eine Kombination des Willisschen-Integral-Iterations- 
Schemas und der Methode der diskreten Ordinate. Die Ergebnisse ftir konstante Kollisionsfrequenz 
stimmen mit bekannten numerischen Msungen, nach der Integral-Methode, sehr gut tiberein. Falle mit 
variabler Kollisionsfrequenz wurden untersucht, und die Ergebnisse zeigen, dass hier nur unbedeutende 
Veranderungen mit Rticksicht auf die FLlle augenblicklicher Kollisionsfrequenz auftreten. Die in dieser 

Arbeit verwendete Methode kann auf eine grosse Klasse von Problemen angewandt werden. 

HPHMEHEHHE MO~B~BHHPOBAHHOI’O @UXPETHOfO METOAA 
OPAHHAT &IIH CJIYrIAH HEJIHHEflHOf’O TEHJIOOEMEHA UHJIHHAPA 

AHHOTaIpI-npOBO@ITCH qnCmeHHOe HCCnt?AOBaHHe HWIHH&KOrO TenJlOO6MeHa MeWHy 
KOHIWHTpPiWCKMMH IpUIIlHApaMH C IIOMOIIJbm MOp$JIbHOrO YpaBHeHHH BGK. PaCYeT 
IIpOBOnHTCH IIyTeM COBMBCTHOFO IIpMMeHeHHiJ HHTWpaJIbHOti klTt?pa~KOHHOti CXt?MbI Bnnnuca 
II MeTOAa ,QPiCKpeTHbIX OPAHHBT. CpElBHeHMf? pe3J'JIbTaTOB AJIR IIOCTOHHHOfi YaCTOTbI CTOJIKHO- 
BeHPiti llOKa3aJlO XOpOUIW COrJlaCOBaHHe C APJWlMEl IlMWOIIJHMClCFl YHCJleHHblMLl AaHHblMM, 
IIOJIyWHHbIMH MeTOHOM MHTWpaJIbHOrO ypaBHeHHi=I. KpOMe TOrO, p3CCM3TpEIBLUOTCfl CJIJ'Wll 
IIepeMeHHOfi qaCTOThl CTOJIKHOBeHHti. flOKEt3aH0, 4TO pe3J'JIbTaTbI cna6o OTJIHYBIOTCR OT 
AaHHbIX IIpH MrHOBeHHhlX CKOPOCTRX CTOnKHOBeHHt. i'hIOJIb3yeMblti MeTOn QlllMeHIlM HJtFl 

6onbmoro rinacca sagas. 


